Herr Dr.

Marcel Hörning

Institut für Biomaterialien und biomolekulare Systeme
Abteilung Biobasierte Materialien


+49 711 685-69117


Pfaffenwaldring 57
70569 Stuttgart
Raum: 9.548


Life Science & Biomedicine, Mathematical & Computational Biology, Physics

  1. Hörning, M., Schertel, A., Schneider, R., Lemloh, M.-L., Schweikert, M.R., Weiss, I.M.: Mineralized scale patterns on the cell periphery of the chrysophyte Mallomonas determined by comparative 3D Cryo-FIB SEM data processing. Journal of Structural Biology. 209, 107403 (2020). https://doi.org/10.1016/j.jsb.2019.10.005.
  2. Li, J., Zhang, L., Yu, L., Minami, I., Miyagawa, S., Hörning, M., Dong, J., Qiao, J., Qu, X., Hua, Y., Fujimoto, N., Shiba, Y., Zhao, Y., Tang, F., Chen, Y., Sawa, Y., Tang, C., Liu, L.: Circulating re-entrant waves promote maturation of hiPSC-derived cardiomyocytes in self-organized tissue ring. Comunications Biology. 3, (2020). https://doi.org/10.1038/s42003-020-0853-0.
  3. Harada, A., Takashima, Y., Nakahata, M., Tanaka, M., Hörning, M.: Polymer gel for medium, medium, and method and kit for culturing cells, https://data.epo.org/publication-server/rest/v1.0/publication-dates/20190605/patents/EP3492576NWA1/document.pdf, (2019).
  4. Umeshima, H., Nomura, K., Yoshikawa, S., Hörning, M., Tanaka, M., Sakuma, S., Arai, F., Kaneko, M., Kengaku, M.: Local traction force in the proximal leading process triggers nuclear translocation during neuronal migration. Neuroscience Research. 142, 38–48 (2019). https://doi.org/10.1016/j.neures.2018.04.001.
  5. Li, J., Zhang, L., Yu, L., Minami, I., Hörning, M., Dong, J., Qiao, J., Fujimoto, N., Shiba, Y., Zhao, Y., Tang, F., Miyagawa, S., Chen, Y., Sawa, Y., Tang, C., Liu, L.: Rapid pacing by circulating traveling waves improves maturation of hiPSC-derived cardiomyocytes in self-organized tissue ring. bioRxiv. 717108, (2019). https://doi.org/10.1101/717108.
  6. Hörning, M., Shibata, T.: Three-dimensional cell geometry controls excitable membrane signaling in Dictyotelium cells. Biophysical Journal. 116, 372–382 (2019). https://doi.org/10.1016/j.bpj.2018.12.012.
  7. Sakuta, H., Seo, S., Kimura, S., Hörning, M., Sadakane, K., Kenmotsu, T., Tanaka, M., Yoshikawa, K.: Optical Fluid Pump: Generation of Directional Flow via Micro-Phase Segregation/Homogenization. The Journal of Physical Chemistry Letters. 9, 5792–5796 (2018). https://doi.org/10.1021/acs.jpclett.8b01876.
  8. Hörning, M., Blanchard, F., Isomura, A., Yoshikawa, K.: Dynamics of spatiotemporal line defects and chaos control in complex excitable systems. Scientific Reports. 7, 7757-- (2017). https://doi.org/10.1038/s41598-017-08011-z.
  9. Hörning, M., Nakahata, M., Linke, P., Yamamoto, A., Veschgini, M., Kaufmann, S., Takashima, Y., Harada, A., Tanaka, M.: Dynamic Mechano-Regulation of Myoblast Cells on Supramolecular Hydrogels Cross-Linked by Reversible Host-Guest Interactions. Scientific Reports. 7, 7660-- (2017). https://doi.org/10.1038/s41598-017-07934-x.
  10. Tanaka, M., Hörning, M., Kitahata, H., Yoshikawa, K.: Elimination of a spiral wave pinned at an obstacle by a train of plane waves: Effect of diffusion between obstacles and surrounding media. Chaos: An Interdisciplinary Journal of Nonlinear Science. 25, 103127 (2015).
  11. Hörning, M., Entcheva, E.: Negative Curvature and Control of Excitable Biological Media - Negative Curvature and Control of Excitable Biological Media. (2015).
  12. Inoue, S., Frank, V., Horning, M., Kaufmann, S., Yoshikawa, H.Y., Madsen, J.P., Lewis, A.L., Armes, S.P., Tanaka, M.: Live cell tracking of symmetry break in actin cytoskeleton triggered by abrupt changes in micromechanical environments. Biomater. Sci. 3, 1539–1544 (2015). https://doi.org/10.1039/C5BM00205B.
  13. Nishikawa, M., Hörning, M., Ueda, M., Shibata, T.: Excitable Signal Transduction Induces Both Spontaneous and Directional Cell Asymmetries in the Phosphatidylinositol Lipid Signaling System for Eukaryotic Chemotaxis. Biophysical Journal. 106, 723--734 (2014). https://doi.org/10.1016/j.bpj.2013.12.023.
  14. Bittihn, P., Hörning, M., Luther, S.: Negative Curvature Boundaries as Wave Emitting Sites for the Control of Biological Excitable Media. Phys. Rev. Lett. 109, 118106 (2012). https://doi.org/10.1103/PhysRevLett.109.118106.
  15. Hörning, M., Kidoaki, S., Kawano, T., Yoshikawa, K.: Rigidity Matching between Cells and the Extracellular Matrix Leads to the Stabilization of Cardiac Conduction. Biophysical Journal. 102, 379--387 (2012). https://doi.org/10.1016/j.bpj.2011.12.018.
  16. Hörning, M., Takagi, S., Yoshikawa, K.: Controlling activation site density by low-energy far-field stimulation in cardiac tissue. Physical Review E. 85, (2012).
  17. Hörning, M.: Termination of pinned vortices by high-frequency wave trains in heartlike excitable media with anisotropic fiber orientation. Phys. Rev. E. 86, 031912 (2012). https://doi.org/10.1103/PhysRevE.86.031912.
  18. Hörning, M., Takagi, S.: 非線形で心筋不整を治療する. 数理科学. 11, (2011).
  19. Tanaka, M., Isomura, A., Hörning, M., Kitahata, H., Agladze, K., Yoshikawa, K.: Unpinning of a spiral wave anchored around a circular obstacle by an external wave train: Common aspects of a chemical reaction and cardiomyocyte tissue. Chaos: An Interdisciplinary Journal of Nonlinear Science. 049904 (2010). https://doi.org/10.1063/1.3263167.
  20. Hörning, M., Takagi, S., Yoshikawa, K.: Wave emission on interacting heterogeneities in cardiac tissue. Phys. Rev. E. 82, 021926 (2010). https://doi.org/10.1103/PhysRevE.82.021926.
  21. Pumir, A., Sinha, S., Sridhar, S., Argentina, M., Hörning, M., Filippi, S., Cherubini, C., Luther, S., Krinsky, V.: Wave-train-induced termination of weakly anchored vortices in excitable media. Phys. Rev. E. 81, 010901 (2010). https://doi.org/10.1103/PhysRevE.81.010901.
  22. Hörning, M., Isomura, A., Jia, Z., Entcheva, E., Yoshikawa, K.: Utilizing the eikonal relationship in strategies for reentrant wave termination in excitable media. Phys. Rev. E. 81, 056202 (2010). https://doi.org/10.1103/PhysRevE.81.056202.
  23. Hörning, M., Isomura, A., Agladze, K., Yoshikawa, K.: Liberation of a pinned spiral wave by a single stimulus in excitable media. Phys. Rev. E. 79, 026218 (2009). https://doi.org/10.1103/PhysRevE.79.026218.
  24. Isomura, A., Hörning, M., Agladze, K., Yoshikawa, K.: Eliminating spiral waves pinned to an anatomical obstacle in cardiac myocytes by high-frequency stimuli. Phys. Rev. E. 78, 066216 (2008). https://doi.org/10.1103/PhysRevE.78.066216.
  25. Pumir, A., Nikolski, V., Hörning, M., Isomura, A., Agladze, K., Yoshikawa, K., Gilmour, R., Bodenschatz, E., Krinsky, V.: Wave Emission from Heterogeneities Opens a Way to Controlling Chaos in the Heart. Phys. Rev. Lett. 99, 208101 (2007). https://doi.org/10.1103/PhysRevLett.99.208101.
  26. Spahn, F., Schmidt, J., Albers, N., Hörning, M., Makuch, M., Seiß, M., Kempf, S., Srama, R., Dikarev, V., Helfert, S., Moragas-Klostermeyer, G., Krivov, A.V., Sremcević, M., Tuzzolino, A.J., Economou, T., Grün, E.: Cassini Dust Measurements at Enceladus and Implications for the Origin of the E Ring. Science. 311, 1416--1418 (2006). https://doi.org/10.1126/science.1121375.
  27. Spahn, F., Albers, N., Hörning, M., Kempf, S., Krivov, A.V., Makuch, M., Schmidt, J., Seiß, M., Sremcević, M.: E ring dust sources: Implications from Cassini\textquotesingles dust measurements. Planetary and Space Science. 54, 1024--1032 (2006). https://doi.org/10.1016/j.pss.2006.05.022.
Zum Seitenanfang